
-Ait82 582 INTEGRATED INFORMATION SUPPORT SYSTEM (JISS) VOLUME 8 In1
USER INTERFACE SUBS (U) GENERAL ELECTRIC CO
SCHENECTADY NY PRODUCTION RESOURCES CONSU

UCLSSIFIED L JONES ET AL 01 NOV 85 D5-6291444818 F/G 12/5 NL

EENhEEEEE hhEm.....III

. . ..

14-

.111 5 1 4 111 1o.

%

AD-A182 582
AFWA-TR-86-4006 *L)

Volume VIII
Part 14

INTEGRATED INFORMATION
SUPPORT SYSTEM (IISS)
Volume VIII - User Interface Subsystem
Part 14 - Forms Language Compiler Development Specification

General Electric Company
Production Resources Consulting
One River Road
Schenectady, New York 12345

Final Report for Period 22 September 1980 - 31 July 1985

November 1985

Approved for public release; distribution is unlimited.

' .. DTIC
MATERIALS LABORATORY EL CTE
AIR FORCE VRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND J, JUL16 1987 E
VRIGHT-PATTERSON AFB, OH 45433-6533 G&

E

87 715 0316

NOTICE

When .Government drawings. specifications, or other data are- used for any purpose other than
in connection with a detinitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the
government may have formulated. furnished, or in any way supplied the Said drawings.
specifications. or other data, is not to be regarded by implication ar otherwise as in any
manner licensing the holder or any other person or corporation, or conveying any nghts or
permission to manufacture, use. or sell any patented invention that may in any way be related
thereto

This report has been reviewed by the Office of Public Affairs (ASDIPA) and is releasable to the
National Technical Information Service (NTIS. At NTIS. it will be available to the general
ppplic. including foreign nations.
t4

This technical repo has been reviewed and is approved for publication.

APROJECT MANAGER DATEA/ALI L TC7E: . IGHT AERSN AFB OH 45433
W 1 PAW

FOR THE COMMANDER:

,/ EIPALD C. SHUMAKER, BRANCH CHIEF DATE
AFWAL/MLTC
WRIGHT PATTERSON AFB OH 45433

.*f your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization please notify AFWAL/MLTC. W-PAFB, OH
45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security Cnnirf1rdti,*
contractual obligations, or notice on a specific document

Ig

Unclassifiled S

REPORT DOCUMENTATION PAGE
Is ft9PO11k ECwtV CL.ASSIFICATION Ilb NESTRICTIVI MARlKINGS

Unclassified

2s, SECu~itW C6ASSIPiCATiOA £THOMItY 05 NISIIOBV7 AVAILAMILITY OF REPORT

3bD6C6ASP OCAtO~uOOWNGSAING $CHI GLE Approved for public release;
distribution is unlimited.

4. PftRPORMlftG ORGANIZAIION ^&PONT NUMSERI11S) 5. MONAtORiNG ORGANiZAtION REPORT NVMBE 0 is

AFWAL-TR-86-4006 Vol V111. Part 14

Ga. NWAME Of PER1PORhIINO ORGANIiZAtION% 6. OPPICE SYMBOL Il N10464 OF mowaitrIN ORGANIZAtION

General Electric Company EODII b AFWAL/HUTC
Production Resources Consulting I_______

ac. ADDRESS rCit. sg d ZI u " b ADDRESS VCsty. Siu& and ZPCe

1 River Road
Schenectady. XT 12345 VPAFB. 0ON 45433-6533

If N4AME Of PUNO~iftG4PO%5ORikG OPPICEL SYm50. g PROCUREMENT INSTR&JhlNT IOENTIPICATION 0VJMBF01

Air Force Systems Commad. USAF AFVAL/MLTC 733615-80-C-.5i55

1k ADDRESS flCt. Stair and ZIP Cod*# 10t SOuRCE of FuNODING N40S

P@1OGRAm PROJECT TASK *CRK usNIT
Wrighit-Pattlerson Ara. Ohio 45433 aELomeNT No. No. NtO 041

___________________________78011?~iF 7500 62 01

(see Reverse)

12 0111SNA ATH11191Jones, Larry and Glandorf. Frank

13a, tYPf OF REPORT 13o. TIME COVERED 11. DATE OF REjPORT EVPL. X. Alsy '$'PAGE COWONT

Final Technical Report 32 Sept 1980 - 31 Jutly 19 lOS5 November 33
S6 SVPP6LEGPILNY NtOTATION4 The computer software contained herein are theoretical and/or

ICANProect rioity 201references that in no vay reflect Air Force-owned or -developed
ICANProect rioity 201 computer software.

17 COlAT, CODES Is SUDJACT ?soon~ vCeMAaW o WWu aeeseiner, a" dsmaft 63, Meshk ftwj,

01L GPOUP I U su Ro

1306 0905

is ASTRACT ICONS~ on opf of dwesvad $omb by Wes at '

This DS establishes the requirements for the compiler (FLAN) that
translates Form Definition Language source files into binary form
definition file format.

20 DlSAGWT1Os.,AVAI..A8SI1t OS ABSTRACT rat ABSTRACT SEiCu~?Rity llCT4

I.INC641145PID110016IMIYSO W SAME AS NOT C: OIC U6101 0 Unclassified

22. "1AME O0 011660N046166 IND10VIOUAi. tELEPH110ONE "W1114ER0 22C DPP#CE Sdsou

David L. Judson Si-r5W6 ?ALIt2CTC

DO FORM 1473.83 APR IDIt1es OF I. As.,7318 0so06st. Unclassified

84SCuRITY CLAS1FIC*TION01 OP T041i5 PAGE

S%

11. Title

Integrated Information Support System (IISS)
Vol VIII - User Interface Subsystem
Part 14 - Forms Language Compiler Development

Specification

A S D 86 0032
9 Jan 1986

Accession For
I---- - -- X
N4TIS GRA&I
DTIC TAB
Unanno.nced L i
Justif ication-

By
Diutribution/

Availability Codes

Avall and/or

Dist spocia.

PA°"

I 1

DS 620144401B

1 November 1985

PREFACE

This development specification covers the work performed
under Air Force Contract F33615-80-C-5155 (ICAM Project 6201).
This contract is sponsored by the Materials Laboratory. Air
Force Systems Command, Wright-Patterson Air Force Base, Ohio.
It was administered under the technical direction of Mr. Gerald
C. Shumaker, ICAM Program Manager. Manufacturing Technology
Division, through Project Manager, Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company, Schenectady. New York, under the direction of
Mr. Alan Rubenstein. The General Electric Project Manager was
Mr. Myron Hurlbut of Industrial Automation Systems Department.
Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to

Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role
N"

Boeing Military Aircraft Reviewer.
Company (BMAC)

D. Appleton Company Responsible for IDEF support,
(DACOM) state-of-the-art literature

search.

General Dynamics/ Responsible for factory view
Ft. Worth function and information

models.

"i, , ,:iii

0 4 -

DS 620144401B
1 November 1985

Subcontractors Role

Illinois Institute of Responsible for factory view
Technology function research (IITRI)

and information models of
small and medium-size business.

North American Rockwell Reviewer.

Northrop Corporation Responsible for factory view
function and information
models.

Pritsker and Associates Responsible for IDEF2 support.

SofTech Responsible for IDEFO support.

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors Role

Boeing Military Aircraft Responsible for consultation on
Company (BKAC) applications of the technology

and on IBM computer technology.

Computer Technology Assisted in the areas of
Associates (CTA) communications systems, system

design and integration
methodology, and design of the
Network Transaction Manager.

Control Data Corporation Responsible for the Common Data
(CDC) Model (CDM) implementation and

part of the CDM design (shared
with DACOM).

D. Appleton Company Responsible for the overall CDM
(DACOM) Subsystem design integration

and test plan, as well as part
of the design of the CDM
(shared with CDC). DACOM also
developed the Integration

* Methodology and did the schema
mappings for the Application
Subsystems.

iv

DS 620144401B
1 November 1985

Subcontractors Role

Digital Equipment Consulting and support of the
Corporation (DEC) performance testing and on DEC

software and computer systems
operation.

McDonnell Douglas Responsible for the support and
Automation Company enhancements to the Network
(McAuto) Transaction Manager Subsystem

during 1984/1985 period.

On-Line Software Responsible for programming the
International (OSI) Communications Subsystem on the

IBM and for consulting on the
IBM.

Rath and Strong Systems Responsible for assistance in
Products (RSSP) (In 1985 the implementation and use of
became McCormack U Dodge) the MRP II package (PIOS) that

they supplied.

SofTech, Inc. Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Software Performance Responsible for directing the
Engineering (SPE) work on performance evaluation

and analysis.

Structural Dynamics Responsible for the User
Research Corporation Interface and Virtual Terminal
(SDRC) Interface Subsystems.

Other prime contractors under other projects who have
contributed to Test Bed Technology. their contributing
activities and responsible projects are as follows:

Contractors ICAM Project Contributing Activities
I

Boeing Military 1701, 2201, Enhancements for IBM
Aircraft Company 2202 node use. Technology
(BMAC) Transfer to Integrated

Sheet Metal Center
(ISMC).

v

DS 620144401B
1 November 1985

Contractors ICAN Project Contributing Activities

Control Data 1502, 1701 IISS enhancements to
Corporation (CDC) Common Data Model

Processor (CDMP).

D. Appleton Company 1502 IISS enhancements to
(DACOM) Integration Methodology.

General Electric 1502 Operation of the Test
Bed and communications
equipment.

Hughes Aircraft 1701 Test Bed enhancements.
Company (HAC)

Structural Dynamics 1502, 1701, IISS enhancements to
Research Corporation 1705 User Interface/Virtual
(SDRC) Terminal Interface

(UI/VTI).

Systran 1502 Test Bed enhancements.
Operation of Test Bed.

4,4Imh.

DS 620144401B
1 November 1985

TABLE OF CONTENTS

Page

SECTION 1.0 SCOPE 1-1
1.1 Identification 1-1
1.2 Functional Summary 1-1

SECTION 2.0 DOCUMENTS 2-1
2.1 Reference Documents 2-1
2.2 Terms and Abbreviations 2-2

SECTION 3.0 REQUIREMENTS 3-1
3.1 Computer Program Definition 3-1
3.1.1 System Capacities 3-1
3.1.2 Interface Requirements 3-1
3.1.2.1 Interface Block Diagram 3-2
3.1.2.2 Detailed Interface Definition 3-4
3.1.2.2.1 Forms Language Compiler Interfaces . 3-4
3.1.2.2.1.1 Form Definition Language 3-4
3.1.2.2.1.2 Binary Form File Format 3-4
3.1.2.2.1.3 User Input to FLAN 3-4
3.1.2.2.1.4 FLAN Error Messages 3-5
3.1.2.2.2 REVFLAN Interfaces 3-6
3.1.2.2.3 MAKINC Interfaces 3-6
3.2 Detailed Functional Requirements 3-6
3.2.1 FLAN Functional Requirements 3-6
3.2.2 REVFLAN Functional Requirements 3-8
3.2.3 MAKINC Functional Requirements 3-8
3.3 Performance Requirements 3-8
3.3.1 Programming Methods 3-8
3.3.2 Program Organization 3-9
3.3.3 Modification Requirements 3-9

SECTION 4.0 QUALITY ASSURANCE PROVISIONS 4-1
4.1 Introduction and Definitions 4-1
4.2 Computer Programming Test and Evaluation . 4-1

SECTION 5.0 PREPARATION FOR DELIVERY 5-1

APPENDICES

A FORM DEFINITION LANGUAGE SYNTAX A-I
B BINARY FORM DEFINITION FILE RECORD STRUCTURES B-I

vii

DS 620144401B
1 November 1985

FIGURES

3-1 FLAN Interfaces.............................. 3-3
3-2 FLANl Screen.................................. 3-5
3-3 Major Internal Data Structures...............3-8

viii

DS 620144401B
1 November 1985

SECTION 1

SCOPE

1.1 Identification

... This specification establishes the detailed requirements
for performance, design, test, and qualification of a computer
program identified as the Forms Definition Language Compiler,
hereinafter referred to as FLAN. FLAN is one configuration
item of the Integrated Information Support System User Interface
(IISS UI).

1.2 Functional Summary

. FLAN is used to compile Form Definition Language source
files into binary Form Definition File format. Form Definition
files are used as input to the Form Processor in displaying the
forms. REVFLAN is used to create a Form Definition Language
source file from one or more version 1.0 Form Definition Files
which were derived from the DEC FMS utility before FLAN was
implemented and which had no source file. MAKINC creates
program variable declarations which correspond to the structure
of a form and are useful to application programs which make use
of Form Processor calls to PDATA and GDATA.-

-The parser and some procedures of FLAN are used by the
Forms Driven Forms Editor (FDFE), the Report Writer (RW), and
the Rapid Application Generator (RAP) (all three of which are
configuration items). This ensures that the language which is
accepted by them is identical.

_ L. 1-1a -,

DS 620144401B
1 November 1985

SECTION 2

DOCUMENTS

2.1 Reference Documents

[1] ICAM Documentation Standards, ICAM Document IDS
150120000C, 15 September 1983.

[2] IISS Integration Task Force, Final Report, 1984.

[3] A. V. Aho and J. D. Ullman, Principles of Compiler
Design, Addison-Wesley, 1977.

[4] S. C. Johnson, "YACC: Yet Another Compiler-Compiler,"
UNIX* Programmer's Manual, Seventh Edition, Vol. 2,
Bell Laboratories, 1983.

[5] General Electric Co., System Design Specification, 7
February 1983.

[6] Structural Dynamics Research Corporation, Report
Writer Development Specification, DS 620144501,
1 November 1985.

[7] Structural Dynamics Research Corporation, Rapi
Application Generator Development Specification,
DS 620144502 , I November 1985.

[8] Structural Dynamics Research Corporation, Text
Editor Development Specification, DS 620144600B,
1 November 1985.

[9] Structural Dynamics Research Corporation, Form
Processor Development Specification, DS 620144200B,
I November 1985.

[10] Structural Dynamics Research Corporation, Application
Interface Development Specification, DS 620144700
1 November 1985.

[III Structural Dynamics Research Corporation, Forms
Language Compiler Development Specification,
DS 620144401B, I November 1985.

* UNIX is a trademark of AT&T Bell Laboratories.

2-1

DS 620144401B
1 November 1985

[12] Structural Dynamics Research Corporation, Forms
Driven Form Editor Development Specification,
DS 620144402B, 1 November 1985.

[13) Structural Dynamics Research Corporation, User
Interface Services Development Specification,
DS 620144100B, 1 November 1985.

[14] Structural Dynamics Research Corporation, Virtual
Terminal Development Specification, DS 620144300B,
1 November 1985.

2.2 Terms and Abbreviations

Application Definition Language: an extension of the Forms
Definition Language that includes retrieval of database
information and conditional actions. It is used to define
interactive application programs.

Attribute: field characteristic such as blinking,
highlighted, black, etc. and various other combinations.
Background attributes are defined for forms or windows only.
Foreground attributes are defined for items. Attributes may be
permanent, i.e., they remain the same unless changed by the
application program, or they may be temporary, i.e., they remain
in effect until the window is redisplayed.

Common Data Model: (CDM), IISS subsystem that describes
common data application process formats, form definitions, etc.
of the IISS and includes conceptual schema, external schemas,
internal schemas, and schema transformation operators.

Displa' List: is similar to the open list, except that it
contains only those forms that have been added to the screen and
are currently displayed on the screen.

Field: two-dimensional space on a terminal screen.

*Form: structured view which may be imposed on windows or
other forms. A form is composed of fields. These fields may be
defined as forms, items, and windows.

Form Definition: (FD), forms definition language after

compilation. It is read at runtime by the Form Processor.

'I 2-2

DS 620144401B
1 November 1985

Forms Definition Language: (FDL), the language in which
electronic forms are defined.

Form Editor: (FE), subset of the IISS User Interface that
is used to create definitions of forms. The FE consists of the
Forms Driven Form Editor and the Forms Language Compiler.

Form Hierarchy: a graphic representation of the way in
which forms, items and windows are related to their parent form.

Forms Language Compiler: (FLAN), subset of the FE that
consists of a batch process that accepts a series of forms
definition language statements and produces form definition
files as output.

Form Processor: (FP), subset of the IISS User Interface
that consists of a set of callable execution time routines
available to an application program for form processing.

Integrated Information Support System: (IISS), a test
computing environment used to investigate, demonstrate and test
the concepts of information management and information
integration in the context of Aerospace Manufacturing. The IISS
addresses the problems of integration of data resident on
heterogeneous data bases supported by heterogeneous computers
interconnected via a Local Area Network.

Item: non-decomposable area of a form in which hard-coded
descriptive text may be placed and the only defined areas where
user data may be Input/output.

Message: descriptive text which may be returned in the
standard message line on the terminal screen. They are used to
warn of errors or provide other user information.

Operating System: (OS), software supplied with a computer
which allows it to supervise its own operations and manage
access to hardware facilities such as memory and peripherals.

Page: instance of forms in windows that are created
whenever a form is added to a window.

Pagin and Scrolling: a method which allows a form to
contain more data than can be displayed with provisions for
viewing any portion of the data buffer.

2-3

AAn

DS 620144401B
1 November 1985

Qualified Name: the name of a form, item or window preceded
by the hierarchy path so that it is uniquely identified.

Subform: a form that is used within another form.

User Interface: (UI), IISS subsystem that controls the
user's terminal and interfaces with the rest of the system. The
UI consists of two major subsystems: the User Interface
Development System (UIDS) and the User Interface Management
System (UIMS).

User Interface Development System: (UIDS), collection of
IISS User Interface subsystems that are used by applications
programmers as they develop IISS applications. The UIDS
includes the Form Editor and the Application Generator.

Window: dynamic area of a terminal screen on which
predefined forms may be placed at run time.

XI..

-'2

a,

_ 2-4

DS 620144401B
1 November 1985

SECTION 3

REQUIREMENTS

3.1 Computer Program Definition

FLAN is a compiler which translates Form Definition
Language source files into binary Form Definition File format.
The binary Form Definition Files are then used as input by the
Form Processor (another configuration item of the IISS UI) for
display and entry of data under the control of other application
programs.

While FLAN is normally invoked from the IISS function
screen, another version is available which can be invoked from
the host system. This second version is required so
configuration management software can be used in managing Forms
Definition Language files in a manner similar to other source
files.

In order to ease the conversion of forms which were not
created using the Forms Definition Language. REVFLAN is used.
REVFLAN is a program used to create a Forms Defintion Language
source file from one or more version 1.0 binary Form Definition
files which were created using the DEC FMS. The resulting Form
Definition Language file may then be FLANed to produce version
2.0 binary Form Definition files. REVFLAN is invoked from the
host system.

MAKINC is a program that creates program variable
declarations which correspond to the structure of a form and may
be used in application programs which make use of the Form
Processor calls PDATA and GDATA. The following programming
languages are supported: PL/I. COBOL, and C. MAKINC is invoked
from the host system.

3.1.1 System Capacities

FLAN is written in the C programming language and runs on a
DEC VAX minicomputer under the VMS operating system.

3-1

DS 620144401B

1 November 1985

* 3.1.2 Interface Requirements

FLAN may be invoked from the IISS function screen or from
the host system. In either case the user specifies a Forms
Definition Language (FDL) source file to be compiled and FLAN
will then output binary Form Definition (FD) files. Error
messages are directed to the user's terminal.

The format of the binary Form Definition Files produced by
FLAN is constrained to agree with the format expected by the
Form Processor configuration item.

The syntax of the Form Definition Language accepted as
input is based on the preliminary syntax developed by the IISS
Integration Task Force and reported in their Final Report. FLAN
also accepts statements of the Report Writer language and the
Application Generator language but performs no semantic
processing on those statements.

REVFLAN is invoked from the host system. The user is
prompted for the name of the Forms Definition Language file that
REVFLAN will create and for the name of each binary Form
Definition file that is to be reverse compiled.

MAKINC is invoked from the host system. The user is
prompted for the computer programming language, the name of the
output file and for each form for which program variable
declarations are desired.

3.1.2.1 Interface Block Diagram

The interface block diagram for FLAN is shown in Figure
3-1 The top box represents the file MYFORMS.FDL which is input
to the FLAN compiler (second box). FLAN produces a FD file for
each CREATE FORM statement in the source file. Each FD file is
input for the Form Processor which is part of the User Interface
system Binary Form Definitions are also input to REVFLAN which
produces a FDL file and MAKINC which produces a file with
program variable declarations.

3-2

.4V

U U U -. U - .-. . . ,.-. ,- . - - - -. .-. .- - -. ,- - -. .-. ,

DS 620144401B
1 November 1985

MYFORMS. FDL
+---------------------------

I I

I CREATE FORM Fl I

Background Black I* prooess *

I Prompt I

Center at 2 40 1
"Form Fl"

Item A -----------
I data I

CET O-----------

i CREATE FORM F2

I I
I CREATE FORM F3

• FLAN *

+------------- ---------------------------- +

I I I
I F1.FD I F2.FD I F3.FD

+------+-------+ +-+------------ +------------
II I I II

+-------+------+ +------------ +-------------
I I I

+------------- -+--------------------------+
I

+------------- -- +---------------------------+

•************* ,.***.******, ,,*...,** *

" Form ' * REVFLAN M* NAKINC '

* Processor * * " "
* es**e* ******* ******

------------ ---------------- +

I .FDL I I variable I
I I I declarations I

------------+ ----------------

Figure 3-1 FLAN Interfaces

3-3

* %

DS 620144401B
1 November 1985

3.1.2.2 Detailed Interface Definition

3.1.2.2.1 Form Language Compiler Interfaces

' 3.1.2.2.1.1 Form Definition Language

The syntax of the Form Definition Language accepted as
input by FLAN is documented in Appendix A. This language is
intended to provide access to all Form Processor functionality.
It is also intended to be a LALR(1) Grammar for ease of parsing.
A number of automatic parser generators are available for

A LALR(1) grammars, most notably the UNIX* utility YACC.

A. 3.1.2.2.1.2 Binary Form File Format

The formats of the records in the binary Form Definition
Files produced as output by FLAN are documented in the include
file FFFV2.H, contained in Appendix B. The sequence of records
in the file is:

1) The version record which identifies the file format.
2) The form record for the form.
3) A text record for each prompt (both form prompts and

field prompts).
4) A field record for each field.
5) The text of all of the prompts divided into 80 character

records.
6) The default values of all of the fields divided into 80

character records.

3.1.2.2.1.3 User Input to FLAN

The following is the IISS form FLAN uses to prompt the user
for an input file.

4. *UNIX is a trademark of AT&T Bell Laboratories.

p.3

DS 620144401B
1 November 1985

IISS Forms Definition Language Compiler Release 2.0

I--

I Forms Definition Language File Name:

Msg: 0 applcation I

Figure 3-2 FLAN screen

The host system invocation of FLAN is system dependent.
The user specifies a Forms Definition Language (FDL) source file
to be compiled and FLAN will then output binary Form Definition
(FD) files. Error messages are directed to the user's
terminal.

3.1.2.2.1.4 FLAN Error Messages

FLAN error messages are of the format:

line number: type - message text

Where line number is the number of the line on which the error
occurred. Type is either WARNING, ERROR, or FATAL. WARNING
messages do not prevent FD file generation but indicate
potential runtime problems. ERROR messages are sufficiently
serious to prevent FD file generation but error checking
continues for the rest of the file FATAL messages prevent all
further compilation

3-5

" "............. .*...,-..-..........,..,.-- .. .

DS 620144401B
1 November 1985

3.1.2.2.2 REVFLAN Interfaces

The invocation of REVFLAN is system dependent. The user is
prompted for the name of the Forms Definition Language file that
REVFLAN will create and for the name of each binary Form
Definition file that is to be reverse compiled.

3.1.2.2.3 MAKINC Interfaces

The invocation of MAKINC is system dependent. The user is
prompted for the computer programming language, the name of the
output file and for each form for which program variable
declarations are desired.

3.2 Detailed Functional Requirements

3.2.1 FLAN Functional Requirements

FLAN allows one to specify the following items required by
the Form Processor and which are discussed in detail in the Form
Processor s Developement Specification:

1) Array.
2) Attribute.
3) Field.

4) Form.
5) Help form.
6) Item.
7) Prompt.
8) Subform.
9) Window.

FLAN is strictly a transformational process -- its sole
function is to translate data from one format to another, both
of which are well defined To accomplish this transformation in
the most useful manner (where useful is defined as providing
functions which will be of use to other CIs which are currently
planned), the following internal data structures are used.

-3-6

DS 620144401B
1 N~ovember 1985

F IELD attmap TEXT
+----------- +----------- +----------- +-----------

I opnlst I -------1 nxtfld I I name I +-,I nxttxt I
4----------- +----------- +----------- I +-----------

I prvfld i+->I name I I I text I
* ----------- I ---------- I ----------

Ilconpt~rI I I name I I I

---------- I +----------- I v

I lstpt~r I I +---------- field
+---------- I I I prompt
I attptr 1-+ I ----------- text

+-----------

I txtptr I------------------
+---------- ENODE
I value I +----------
+-------+----------------- I1 1-- calculated

/ +---------- value
I I --- express ion

/ contnt +---------- tree

----------- -------------

S. -------- -------- -------- --------

I ITEM I I FORM i IWINDOWI 1ARRAY I
-------- -------- -------- --------

I dap I

*-------- item
I I default
--------- value

Figure 3-3 Major Internal Data Structures

As statements are read in and recognized, an internal data
structure is created and filled in. This data structure is
Identical to the one used by the Form Processor. Figure 3-2
illustrates this data structure. Note that pointers in the
figure which are not shown pointing to anything represent linked

W lists of Items of the type containing the pointer. All of these
lists contain zero or more entries depending on the Input data.

3-7

DS 620144401B
1 November 1985

After all of the input statements have been read in and
processed and the internal data structure created and filled in
without error, the contents of the internal data structure are
recorded in binary form files.

When a processing error does occur, an error message is
issued to the terminal specifying as much information as
possible about the nature of the error and the location of the
input statement causing it. When possible. processing continues
after an error is recognized so that additional errors may also
be detected.

3.2 2 REVFLAN Functional Requirements

REVFLAN is strictly a transformational process -- its sole
function is to translate data from one format to another, both
of which are well defined. The input to REVFLAN is constrained
to agree with the version I binary Form Definition files
accepted by the Form Processor. Its output is Form Definition
Language source which is syntacticly and semanticly acceptable
input to FLAN. When input to FLAN the output will be quivalent
version 2 FD files.

3.2.3 MAKINC Functional Requirements

MAKINC is strictly a transformational process -- its sole
function is to translate data from one format to another, both
of which are well defined. The input to MAKINC is constrained
to agree with version 2 binary Form Definition files accepted by
the Form Processor. The output is a set of program variable
declarations which are syntacticly and semanticly correct for
the language of choice and which correspond (in structure, name
and size) to the forms and fields in the FD file. These
programming languages include:

1) C.
2) COBOL.
3) PL/I.

3.3 Performance Requirements

3.3.1 Programming Methods

Z. A parser generator. YACC. is used to create the parser and
existing Form Processor routines are used as appropriate as the
internal data structures used by flan are identical to that used
by the FP.

3-8
"I

Io

DS 620144401B
1 November 1985

3.3.2 Program Organization

The actual module structure was refined as other CIs were
developed which make use of the functionality of FLAN. FLAN
basicly consists of a lexical analyzer, an LALR(l) parser, some
semantic procedures and a code generator (writes binary Form
Definition files). Syntax errors are detected by the lexical
analyzer and parser. Semantic errors are detected by the
semantic procedures.

3.3.3 Modification Requirements

The use of a parser generator makes changes to the Form
Definition Language easy to implement since one specifies only
the grammar and not the parse tables. Using existing Form
Processor routines ensures that changes made to FP data
structures and procedures will require few changes be made to
FLAN's procedures.

3-9

! 5-

DS 620144401B
1 November 1985

SECTION 4
QUALITY ASSURANCE PROVISIONS

4.1 Introduction and Definitions

"Testing" is a systematic process that may be preplanned
and explicitly stated. Test techniques and procedures may be
defined in advance and a sequence of test steps may be
specified. "Debugging" is the process of isolation and
correction of the cause of an error.

"Antibugging" is defined as the philosophy of writing
programs in such a way as to make bugs less likely to occur and
when they do occur, to make them more noticeable to the
programmer and the user. In other words, as much error checking
as is practical and possible in each routine should be
performed.

4.2 Computer Programming Test and Evaluation

The quality assurance provisions for test consists of the
normal testing techniques that are accomplished during the
construction process. They consist of design and code
walk-throughs, unit testing, and integration testing. These
tests are performed by the design team. Structured design,
design walk-through and the incorporation of "antibuggilig"
facilitate this testing by exposing and addressing problem areas
before they become coded "bugs".

The integration testing entails use of a test application
of the VAX. This test program displays forms, reads input from
forms, and displays results.

Each function is tested separately, then the entire sub-
system is tested as a unit. All testing is done on the IISS
testbed VAX.

4-1

DS 620144401B
1 November 1985

SECTION 5

PREPARATION FOR DELIVERY

The implementation site for the constructed software is the
ICAM Integrated Support System (IISS) Test Bed site located at
General Electric, Schenectady, New York. The software
associated with each CPCI release is delivered on a media which
is compatible with the IISS Test Bed. The release is clearly
identified and includes instructions on procedures to be
followed for installation of the release. Integration with the

9 other IISS CPCI's will be done on the IISS TEST BED on a
scheduled basis.

F,

"p

'p

5-1

V,

DS 620144401B
1 November 1985

APPENDIX A

FORM DEFINITION LANGUAGE SYNTAX

This document uses the following notation to describe the
Ssyntax of the FDL entries:

2 UPPER-CASE identifies reserved words that have specific
meanings in the FDL. These words are
generally required unless the portion of the
statement containing them is itself
optional.

lower-case identifies names, numbers, or character
strings that the user must supply.

Initial upper-case identifies a statement or clause that is
defined later on.

.' .. _Underscores Identify reserved words or portions of
reserved words that are optional.

{ } Braces enclosing vertically stacked options
indicate that one of the enclosed options is
required.

[J Brackets indicate that the enclosed clause or option
is optional. When two or more options are
vertically stacked within the brackets, one
or none of them may be specified.

... Ellipsis indicates that the preceding statement or
clause may be repeated any number of times.

A-

DS 620144401B
1 November 1985

Form Definition

CREATE FORM form-name

[SIZE int-1 [BY int-2]]

BACKGROUND {BLACK) 3
(WHITE)

[PROMPT Location promptstring ...]

, FieldDefinition ...

Field Definition - Items

ITEM itemname [Repeat Spec]

Location
4.

[SIZE int-1 [BY int-2]]

[VALUE { string constant }]
{ INDEX(field name))
{ '. TIME' -

'.-DATE'

(INPUT)
(OUTPUT)

DISPLAY AS {HIDDEN)
(TEXT }

[LEFT] [UPPER]
[DOMAIN ([RIGHT] [LOWER] [MUST ENTER

[MUST FILL] [NUMERIC I [MAXIMUM int-]

F MINIMUM int-2 3)]

{ helpstring }
HELP (help form name) 3

{ APPLICATION }

[PROMPT Location promptstring ...]

A-2

DS 620144401B
1 November 1985

Field Definition - Forms

FORM form-name [RepeatSpecI

Location

SIZE int-I 1BY int-2

[PROMPT Location prompt string ...

Field Definition - Windows

WINDOW windows-name [RepeatSpec

Location

, SIZE mnt-i [BY int-2

(BLACK)
(BACKGROUND (WHITE I

[PROMPT Location prompt string ...

AA-

U% %

- -U V-.-- -- -------------

DS 620144401B
1 November 1985

Locat ion

i [int] { LEFT) OF [field-name] } +-
{ {RIGHT - lAND
{ COLUMN int } +_

S[int] { BELOW) [field name] 1 -+
{ (ABOVE -
{ ROW int) _+

I{ [int] { ABOVE I [field-name J } +-
{BELOW) I AND

{ ROW int } +

[Rpt] AT
I ((mnt RIGHT)OF (field-name 3)-

I { {LEFT } - '
(COLUMN int -+

S{ [int] { LEFT) OF [Rpt OF] [field name]
{ I { RIGHT _

I i [int (ABOVE} [RptO] [field-name] }
({ BELOW -

I int-1 int-2 [RELATIVE TO [Rpt OF] [field name])
\/

/\

i TOP LEFT
ITOP
I TOP RIGHT
ILEFT
CENTER
RIGHT

i BOTTOM LEFT
BOTTOM

I BOTTOM RIGHT I

A-4

- VSVi

DS 620144401B
1 November 1985

Repeat Spec

i(t-i (HORIZONTAL) [WITH int-3 SPACES] .])
(int-i/int-2)(VERTICAL)
int-1/int-1

i { t-i'

A-5

1 e V I -Ir

DS 620144401B

1 November 1985

APPENDIX B

BINARY FORM DEFINITION FILE RECORD STRUCTURES

/*NAME
fffv2.h - For. File Format - Version 2

5 VWritten: 18-JUL-1984 13.03.25
* Revised: 18-JUL-1984 13:03:25 - SCJONES

5DESCRIPTION

Record layouts for the binary form definition file

typedef struct /8 version number record/
(char rectyp; /* 1' S/

int vernum; /0 current version number (2)/
char linefeed;) VERREC;

typedef struct /* form record *
(char form, naze[lOl; /* form name .

char background[1O]; /0 background name/
short row; 1* starting row/
short col; I' starting col/
short width; /. width '
short depth; /* depth ~
short n txtflds; /0 number of text fields I/
short n datfids; /s number of data fields e

short s txtbuf; /I size of the text buffer
short s-defbuf; /I size of the default buffer
char linefeed; FRMREC;

typedef struct /S text record .

{ short row; '* starting row '

short col; /0 starting col/
short len; I' total length .

char linefeed;) TXTREC;

typedef struct /* field record1
{ char fld naze[lO]; /, field name '/

char fid_type; /* field type (F. I. V. A) 0
short row; /0 starting row1

4short col; /0 starting col
short width: I' field width .
short depth; /0 field depth/
int min-value; /0 minimum value (if any) '

B-1

dy WI.e.Z..,i..

'a DS 620144401B3
I November 1985

int max -value; 1 maximum value (if any) '

char helpline(80). /help text a/
char dispatt[1I: / display attribute '

short n formats; I' number of formats ~
char format[12](2]; /I format strings */
short n -arydefs; I' number of dimensions 5

struct /0 dimension specification 0/

char dir: /I repeat direction (H. V) .

short cnt: I' actual repeat count '/

short sp; /* number of spaces between repetitions
short dspsize; /* display repeat count */
Iarray def(3); char linefeed: IFLDREC:

.B-

1)h 0'

......

-S

0

S.

0~

-S

SS~

a,

a,.

A
-4

-.win-.. .1w" Sw. ~ ~W Y S 'S S S @ *~W S 5-. ~

. .A~
~. ~ a, ,.~a,.., 4~~a, -- A

'F 1 .S a' * ~ S'

